
 

 

 

 

WAVE2: Warriors Autonomous Vehicle 

2010 IGVC Entry 

Wayne State University 

 

Advising Faculty:  

Dr. R. Darin Ellis 

 

Team Members:  

Justin Ar-Rasheed 

Shawn Hunt 

Sam Li  

Vishal Lowalekar 

Prem Sivakumar 

 Ali Syed 

 

 

 

Faculty adviser statement 

I certify that the engineering design in the vehicle by the current student team has been 

significant and equivalent to what might be awarded credit in a senior design course. 

 

 

________________________________________ 

Prof. R. Darin Ellis 

Industrial and Manufacturing Engineering 

Wayne State University 



1. INTRODUCTION 

This technical report details Wayne State University’s submission for the 2009 Intelligent 

Ground Vehicle Competition.  This is Wayne State’s first submission to the IGVC, which we all 

hope will only be the first of many entries in future years.  Our team draws on students mainly 

from Electrical and Computer Engineering. 

Section 2.0 describes the hardware architecture that we used including the electronics, electrical 

system, actuators, sensors, and computers.  Section 3.0 describes our approach to signal 

processing, path following, and the control loop for moving the platform.  Section 4.0 describes 

our system integration plan. 

2. HARDWARE OVERVIEW 

2.1 Introduction 

This section describes the hardware used in our entry.  Section 2.2 describes the platform.  

Section 2.3 describes the electronics and sensors we chose to use.  Section 2.4 describes the 

electrical system.  Section 2.5 describes the actuator that we are using. 

2.2 Platform 

The platform that we used for our entry started off as a wheelchair.  Figure 1 is a picture of the 

platform equipped with some electronics.  It is a skid-steer design with a rear passive wheel. 

 

Figure 1: Our modified wheelchair base during the build process. 



2.3 Electronics and Sensors 

At the time of writing, we are still working on using a Mac Mini loaded with Ubuntu 8.04 as the 

brains of our robot.  In the work we have done on other projects, we are able to run code on the 

dual processors as well as the NVIDIA GPU that is CUDA compatible. In the interim, ee are 

using one laptop, a Gateway tablet PC, that has been loaded with Ubuntu 8.04.  This laptop does 

not contain any serial ports.  A device made by Quatech accepts a USB connection in and 

provides eight RS232 ports out, each capable of data rates up to 921 Kbps.  The devices that we 

have plugged into the RS232 box are an inertial measurement unit (IMU), a global positioning 

system (GPS), an RS232 connection for the Sony pan/tilt/zoom camera, and for communicating 

with the Roboteq motor controller. 

We are using passive optics for our obstacle detection, which is described in more detail in our 

software overview.  The Sony camera outputs an NTSC signal which is fed into a PCMCIA 

frame grabber from ImperX to the laptop.  The overall view of our electronics is shown in Figure 

2.   

 

 

Figure 2: Architecture of our computer and sensors 



2.4 Electrical System 

There are two 12V batteries in the base of the wheelchair.  They are connected in parallel to 

double the amp hours that are available.  There is a connection coming off of one battery to 

power the equipment on top of the platform. 

To avoid excessive power draw by the two motors, a 30A fuse is installed in series with the 

emergency stop.  If the power consumption by any of the devices exceeds that limit, the fuse will 

disconnect the power supply to the platform.  The hardware emergency stop button can also be 

used to quickly disconnect power to the platform and all devices, in case of abnormal operation. 

The sensors being used can be divided into two groups based on their power consumption.  The 

GPS receiver and the IMU both require 9VDC and the Sony camera requires 12 VDC.  In order 

to supply this range, a DC-DC converter is used that accepts 6-30 VDC in and is able to step that 

voltage down to three separate outputs. 

 

Figure 3: Electronic wiring diagram of our IGVC platform 

2.5 Mounting 

This year we are using a fixed pole to mount our camera and DGPS receiver on.  Last year, we 

used a zipper mast that caused problems when we drove the robot with it extended at any length.   



 

3. SOFTWARE OVERVIEW 

3.1 Introduction 

This section describes the software architecture that we used for our entry.  Section 3.2 describes 

the signals we are processing.  Section 3.3 details the approach we used to handle JAUS 

communications.  Section 3.4 describes our algorithm for lane detection and path following.  

Section 3.5 describes our stereo vision processing and Section 3.6 summarizes our control loop 

for autonomous navigation. 

3.2 Signal Processing 

Our approach to reading data from each of the sensors was to use shared memory on the laptop.  

The program that reads from each device spawns a thread for each device and writes the current 

reading to its area in shared memory.  There is a location in shared memory for image data, GPS 

data, IMU data, and feedback from the motor controller.  The module that does the path planning 

reads this data in and then acts upon it.  There is a mutex that has to be acquired by either the 

process doing the reading or the writing of the data in shared memory.  This protects the data 

from becoming corrupted. 

The images from the camera come in at 640x480 resolution.  The pan, tilt, and zoom functions of 

the camera are available through the RS232 interface but right now, we are not using them in our 

control loop. 

The Trimble GPS outputs NMEA data.  The NMEA sentences that we are processing are GGA 

and RMC.  The GGA sentence gives latitude and longitude.  The RMC sentence gives us fix 

information.  The data rate of the GPS is 1 Hz. 

The data that we are reading from the IMU are the acceleration, angular rate, and Euler angles 

(pitch, roll, and yaw).   The data rate of the IMU is around 15 Hz. 

The data that we are reading back from the Roboteq motor controller are amps consumed by 

each motor, current battery voltage, and the relative encoder feedback from each motor.   



3.3 JAUS 

In accordance with IGVC’s JAUS Challenge requirements, the platform will respond to a 

periodic status and information requests from the Judge’s COP. The development of our JAUS 

code is based on Jr Middleware software development tool. We created six JAUS services to 

meet the Interoperability Challenge. The JAUS services include: (1) transport and capability 

discovery service, (2) access control service, (3) management service, (4) local pose sensor 

service, (5) velocity state sensor service, (6) local waypoint driver service. Our team also 

developed and implemented the JAUS messages from the JAUS Core Service Set (AS5710) and 

the Mobility Service Set (AS6009) to meet the requirement. The JAUS messages that are used in 

our platform are shown in the figures below.  Figures 4 and 5 show the JAUS services and 

messages that we implemented. 

 

Figure 4: The JAUS service and messages from SAE AS5170 that are used in our system. 



 

Figure 5: The JAUS services and messages from SAE AS6009 that are used in our system 

 

3.4 Lane Detection 

We took a simple approach to lane detection this year.  We implemented several lane detection 

algorithms including some simple thresholding techniques along with edge detection algorithms 

such as Canny [1] and Sobel [2].  Our algorithms operate in both the RGB (red, blue, green) 

colorspace and HSV (hue, saturation, and value).  We chose the HSV colorspace because our 

experience has been that it is less susceptible to being affected by shadows.  We took data that 

we collected from the course from last year as well as from the test course we constructed to see 

which method works the best.  These algorithms are affected by lighting conditions so our plan is 



to take our toolbox of algorithms with us and decide which one(s) work the best during the 

competition. 

 

Figure 6: The results of our simple thresholding algorithm run on one of the images we 

took of the course last year. 

 

3.5 Stereo Vision 

This year we did not have access to a SICK laser scanner so we opted to use stereo vision for 

depth detection.  We are using two FireWire cameras mounted at the front of the robot.  Our 

stereo vision algorithm isn’t anything novel and readily found in published literature.  At the 

time of writing this, our algorithm uses a simple Sum of Squared Differences (SSD) approach to 

find pixels in the left and right camera views.  The disparity value is computed using the 

Euclidean distance between each pair of points.  Once the distances have been computed, they 



are assembled into a disparity map where the intensities represent the relative depth of points in 

the scene. 

3.6 Control Loop 

The control loop for the navigation challenge first requires the input of the waypoints.  Our 

software grabs an image from the camera, segments it, checking for obstacles.  It next grabs the 

current latitude and longitude from the GPS.  If the path is clear, it moves toward the waypoint.  

If an obstacle is present, the platform attempts to navigate around the obstacle.  Once the 

obstacle has been cleared, the current GPS location is obtained and a new path is calculated.  

This is repeated until the goal location has been reached. 

The control loop for the autonomous challenge is similar to the control loop for the navigation 

challenge except here, once an image has been segmented; we pass it through our naive Bayes 

classifier for lane detection.  The control module will align the robot so that a lane is to the left 

and to the right.  Once the lanes have been found, the platform will move forward, checking for 

obstacles. 

In addition to the hardware emergency stop described earlier, there is also a wireless emergency 

stop.  There is a separate control box that houses a microcontroller and a ZigBee module.  Once 

power has been applied to the circuit, the microcontroller starts transmitting a message that is 

received by a microcontroller that we have connected to the motor controller.  If this message 

stream is not received by the microcontroller on the platform, the microcontroller will send a 

command to the motor controller ceasing all movement. 

4. SYSTEM INTEGRATION 

4.1 Introduction 

This section describes how our system operates as an entire entity.  We describe how our 

platform is able to handle inclines and obstacles. We also touch briefly on our algorithm for GPS 

waypoint navigation.  



4.2 System Integration. 

We have set the current limit of our motor controller to 30A.  This setting does not permit the 

platform to travel faster than the 5 MPH limit as set by the competition rules.  Our platform is 

able to handle ramp climbing.  We have tested this out on thirty-degree ramps without any 

trouble.  This was problematic prior to setting the current limit setting on our motor controller.  

We would pop fuses if the incline was too steep or the platform became stuck in mud.  Our 

platform is also able to handle potholes without any trouble.  We tested on potholes that were 

three feet in diameter and four inches deep. 

Our platform is able to react instantaneously to the hardware emergency stop being pressed.  We 

are able to detect an incline within one second by reading the pitch value from the IMU and 

detecting that the current draw from the motors has increased by reading the data from the motor 

controller. 

We had thought to use a separate power supply on top of the platform to power the electronics 

but the lithium-ion batteries would last for approximately one hour before needing to be 

recharged.  We were concerned that using the power supply from the base would introduce 

power spikes that would cause unpredictable results with our sensors.  This has turned out to not 

be the case. 

As of the time of this writing, our waypoint navigation code has not been finalized yet.   The 

preliminary results of our code are that we are able to navigate to waypoints with approximately 

two meter accuracy.  We also have not yet addressed the more complex obstacles that we will 

encounter such as switchbacks and dead ends. 

 

 

 

 

 



5. REFERENCES 

1. Canny, J., A computational approach to edge detection. IEEE Transactions on pattern 

analysis and machine intelligence, 1986: p. 679-698. 

2. Sobel, I. and G. Feldman, A 3x3 isotropic gradient operator for image processing. 

Presentation for Stanford Artificial Project, 1968. 
 
 

6. APPENDIX 

A. Cost Breakdown 

Item  Cost  

Wheelchair Platform (donated)   

Roboteq AX3500 Controller  $          395.00  

Sony EVI-D70 PTZ Camera  $          875.00  

ImperX VCE-Pro Framegrabber  $          599.00  

Microstrain 3DM-GX1 IMU  $      1,495.00  

Trimble AgGPS   $      5,000.00  

Robotics Group Inc. DC-DC 
Converter  $          295.00  

Quatech USB to RS232  $          800.00  

    

Total  $      9,459.00  

 

B. Man Hours 

Group Person Man Hours 

JAUS Sam 200 

Vision Shawn                 250 

  Vishal 80 

Hardware Ali 200 

  Vishal 40 

 
Prem 40 

  Justin 200 

      

Total   1010 

 

 

 


