WAVE2: Warriors Autonomous Vehicle
2010 IGVC Entry

Wayne State University

Advising Faculty:

Dr. R. Darin Ellis

Team Members:
Justin Ar-Rasheed
Shawn Hunt
Sam Li
Vishal Lowalekar
Prem Sivakumar

Ali Syed

Faculty adviser statement
| certify that the engineering design in the vehicle by the current student team has been

significant and equivalent to what might be awarded credit in a senior design course.

Prof. R. Darin Ellis
Industrial and Manufacturing Engineering
Wayne State University

1. INTRODUCTION
This technical report details Wayne State University’s submission for the 2009 Intelligent
Ground Vehicle Competition. This is Wayne State’s first submission to the IGVC, which we all
hope will only be the first of many entries in future years. Our team draws on students mainly

from Electrical and Computer Engineering.

Section 2.0 describes the hardware architecture that we used including the electronics, electrical
system, actuators, sensors, and computers. Section 3.0 describes our approach to signal
processing, path following, and the control loop for moving the platform. Section 4.0 describes

our system integration plan.
2. HARDWARE OVERVIEW

2.1 Introduction

This section describes the hardware used in our entry. Section 2.2 describes the platform.
Section 2.3 describes the electronics and sensors we chose to use. Section 2.4 describes the

electrical system. Section 2.5 describes the actuator that we are using.

2.2 Platform

The platform that we used for our entry started off as a wheelchair. Figure 1 is a picture of the

platform equipped with some electronics. It is a skid-steer design with a rear passive wheel.

EReENT
;ﬁ‘:?}?* }"}»,A

QAN RSN

Figure 1: Our modified wheelchair base during the build process.

2.3 Electronics and Sensors

At the time of writing, we are still working on using a Mac Mini loaded with Ubuntu 8.04 as the
brains of our robot. In the work we have done on other projects, we are able to run code on the
dual processors as well as the NVIDIA GPU that is CUDA compatible. In the interim, ee are
using one laptop, a Gateway tablet PC, that has been loaded with Ubuntu 8.04. This laptop does
not contain any serial ports. A device made by Quatech accepts a USB connection in and
provides eight RS232 ports out, each capable of data rates up to 921 Kbps. The devices that we
have plugged into the RS232 box are an inertial measurement unit (IMU), a global positioning
system (GPS), an RS232 connection for the Sony pan/tilt/zoom camera, and for communicating

with the Roboteq motor controller.

We are using passive optics for our obstacle detection, which is described in more detail in our
software overview. The Sony camera outputs an NTSC signal which is fed into a PCMCIA
frame grabber from ImperX to the laptop. The overall view of our electronics is shown in Figure
2.

USB to
P o2 | o
N Camera
Functions

Camera
NTSC

PCMCIA

Figure 2: Architecture of our computer and sensors

2.4 Electrical System

There are two 12V batteries in the base of the wheelchair. They are connected in parallel to
double the amp hours that are available. There is a connection coming off of one battery to

power the equipment on top of the platform.

To avoid excessive power draw by the two motors, a 30A fuse is installed in series with the
emergency stop. If the power consumption by any of the devices exceeds that limit, the fuse will
disconnect the power supply to the platform. The hardware emergency stop button can also be

used to quickly disconnect power to the platform and all devices, in case of abnormal operation.

The sensors being used can be divided into two groups based on their power consumption. The
GPS receiver and the IMU both require 9VDC and the Sony camera requires 12 VDC. In order
to supply this range, a DC-DC converter is used that accepts 6-30 VDC in and is able to step that

voltage down to three separate outputs.

Battery

+12u A+l2y

e e e ae— A

.gU.

"Matar Cgntroller

i

T Cround

Figure 3: Electronic wiring diagram of our IGVC platform
2.5 Mounting

This year we are using a fixed pole to mount our camera and DGPS receiver on. Last year, we

used a zipper mast that caused problems when we drove the robot with it extended at any length.

3. SOFTWARE OVERVIEW
3.1 Introduction

This section describes the software architecture that we used for our entry. Section 3.2 describes
the signals we are processing. Section 3.3 details the approach we used to handle JAUS
communications. Section 3.4 describes our algorithm for lane detection and path following.
Section 3.5 describes our stereo vision processing and Section 3.6 summarizes our control loop

for autonomous navigation.

3.2 Signal Processing

Our approach to reading data from each of the sensors was to use shared memory on the laptop.
The program that reads from each device spawns a thread for each device and writes the current
reading to its area in shared memory. There is a location in shared memory for image data, GPS
data, IMU data, and feedback from the motor controller. The module that does the path planning
reads this data in and then acts upon it. There is a mutex that has to be acquired by either the
process doing the reading or the writing of the data in shared memory. This protects the data

from becoming corrupted.

The images from the camera come in at 640x480 resolution. The pan, tilt, and zoom functions of
the camera are available through the RS232 interface but right now, we are not using them in our
control loop.

The Trimble GPS outputs NMEA data. The NMEA sentences that we are processing are GGA
and RMC. The GGA sentence gives latitude and longitude. The RMC sentence gives us fix
information. The data rate of the GPS is 1 Hz.

The data that we are reading from the IMU are the acceleration, angular rate, and Euler angles
(pitch, roll, and yaw). The data rate of the IMU is around 15 Hz.

The data that we are reading back from the Roboteq motor controller are amps consumed by

each motor, current battery voltage, and the relative encoder feedback from each motor.

3.3 JAUS

In accordance with IGVC’s JAUS Challenge requirements, the platform will respond to a

periodic status and information requests from the Judge’s COP. The development of our JAUS

code is based on Jr Middleware software development tool. We created six JAUS services to

meet the Interoperability Challenge. The JAUS services include: (1) transport and capability

discovery service, (2) access control service, (3) management service, (4) local pose sensor

service, (5) velocity state sensor service, (6) local waypoint driver service. Our team also
developed and implemented the JAUS messages from the JAUS Core Service Set (AS5710) and

the Mobility Service Set (AS6009) to meet the requirement. The JAUS messages that are used in

our platform are shown in the figures below. Figures 4 and 5 show the JAUS services and

messages that we implemented.

VT Robot
SAE ASS 710 Complizm
Transport _Query Identification [Message ID: 2B00}) (f}
Discovery Report Identification {Message ID: 4B00) i
Service Query ldentification [Message ID: 2B00)
_Report Identification {(Message ID: 4B00})
Capabilities Query Services (Message ID: 2B03)
DiSCOVEI‘v Report Services [Message ID: 4B03)
Service CBnuery Services [Message ID: 2B03) ,
_Report Services [Message ID: 4B03)
Access Cw\,nuery Control {Message ID: 200D)
Control Report Control [Message ID: 400D}
Service Request Control (Message ID: 000D}
_Confirm Control {Message ID: 000F)
Man agementCBnuery Status {(Message ID: 2002) ,
Service _Report Status (Message ID: 4002}
C%Shutdown {Message ID: 0002)
B >
C%Standby {Message ID: 0003)
» >
C sume [Message ID: 0004)
% >

Figure 4: The JAUS service and messages from SAE AS5170 that are used in our system.

SAE ASG009 Comupliant
Local Pose ({])Query Local Pose (Message ID: 2403) .
Sensor " Report Local Pose [Message ID: 4403)

Service
(NySet Local Pose [Message ID: 0403)
/4

VE'OCitv StateC%Q“e’V Velocity State (Message ID: 2404}

Sensor " Report Velocity State (Message 1D: 4404)
Service
Local Set Element [Message ID: 041A})

Driver Sewic{}nuery Element List (Message ID: 241B)
" Report Element List (Message ID: 441B})

C}Query Element Count (Message ID: 241C})
_Report Element Count (Message ID: 441C)

Execute List (Message ID: 041E})

CB’Query Active Element {Message ID: 241E)

" Report Active Element (Message ID: 441F})
C§Query Travel Speed [Message ID: 240A)
_Report Travel Speed (Message 1D: 440A)
C§Query Local Waypoint [Message ID: 240D)
R Report Local Waypoint (Message ID: 440D}

i
1
I
1
I
1
1
I
1
I
1
1
I
1
I
1
1
I
1
I
1
1
I
1
I
1
1 . .
: Waypomt 4Conﬁrm Element Request (Message ID: 041C)
I
1
1
I
1
I
1
1
I
1
I
1
1
I
1
I
1
I
1
1
I
1
I
1
1
I
1

Figure 5: The JAUS services and messages from SAE AS6009 that are used in our system

3.4 Lane Detection

We took a simple approach to lane detection this year. We implemented several lane detection
algorithms including some simple thresholding techniques along with edge detection algorithms
such as Canny [1] and Sobel [2]. Our algorithms operate in both the RGB (red, blue, green)
colorspace and HSV (hue, saturation, and value). We chose the HSV colorspace because our
experience has been that it is less susceptible to being affected by shadows. We took data that
we collected from the course from last year as well as from the test course we constructed to see

which method works the best. These algorithms are affected by lighting conditions so our plan is

to take our toolbox of algorithms with us and decide which one(s) work the best during the

competition.

Figure 6: The results of our simple thresholding algorithm run on one of the images we

took of the course last year.

3.5 Stereo Vision

This year we did not have access to a SICK laser scanner so we opted to use stereo vision for
depth detection. We are using two FireWire cameras mounted at the front of the robot. Our
stereo vision algorithm isn’t anything novel and readily found in published literature. At the
time of writing this, our algorithm uses a simple Sum of Squared Differences (SSD) approach to
find pixels in the left and right camera views. The disparity value is computed using the

Euclidean distance between each pair of points. Once the distances have been computed, they

are assembled into a disparity map where the intensities represent the relative depth of points in

the scene.

3.6 Control Loop

The control loop for the navigation challenge first requires the input of the waypoints. Our
software grabs an image from the camera, segments it, checking for obstacles. It next grabs the
current latitude and longitude from the GPS. If the path is clear, it moves toward the waypoint.
If an obstacle is present, the platform attempts to navigate around the obstacle. Once the
obstacle has been cleared, the current GPS location is obtained and a new path is calculated.
This is repeated until the goal location has been reached.

The control loop for the autonomous challenge is similar to the control loop for the navigation
challenge except here, once an image has been segmented; we pass it through our naive Bayes
classifier for lane detection. The control module will align the robot so that a lane is to the left
and to the right. Once the lanes have been found, the platform will move forward, checking for

obstacles.

In addition to the hardware emergency stop described earlier, there is also a wireless emergency
stop. There is a separate control box that houses a microcontroller and a ZigBee module. Once
power has been applied to the circuit, the microcontroller starts transmitting a message that is
received by a microcontroller that we have connected to the motor controller. If this message
stream is not received by the microcontroller on the platform, the microcontroller will send a

command to the motor controller ceasing all movement.
4. SYSTEM INTEGRATION

4.1 Introduction

This section describes how our system operates as an entire entity. We describe how our
platform is able to handle inclines and obstacles. We also touch briefly on our algorithm for GPS

waypoint navigation.

4.2 System Integration.

We have set the current limit of our motor controller to 30A. This setting does not permit the
platform to travel faster than the 5 MPH limit as set by the competition rules. Our platform is
able to handle ramp climbing. We have tested this out on thirty-degree ramps without any
trouble. This was problematic prior to setting the current limit setting on our motor controller.
We would pop fuses if the incline was too steep or the platform became stuck in mud. Our
platform is also able to handle potholes without any trouble. We tested on potholes that were
three feet in diameter and four inches deep.

Our platform is able to react instantaneously to the hardware emergency stop being pressed. We
are able to detect an incline within one second by reading the pitch value from the IMU and
detecting that the current draw from the motors has increased by reading the data from the motor

controller.

We had thought to use a separate power supply on top of the platform to power the electronics
but the lithium-ion batteries would last for approximately one hour before needing to be
recharged. We were concerned that using the power supply from the base would introduce
power spikes that would cause unpredictable results with our sensors. This has turned out to not

be the case.

As of the time of this writing, our waypoint navigation code has not been finalized yet. The
preliminary results of our code are that we are able to navigate to waypoints with approximately
two meter accuracy. We also have not yet addressed the more complex obstacles that we will

encounter such as switchbacks and dead ends.

5. REFERENCES
1. Canny, J., A computational approach to edge detection. IEEE Transactions on pattern
analysis and machine intelligence, 1986: p. 679-698.

2. Sobel, I. and G. Feldman, A 3x3 isotropic gradient operator for image processing.
Presentation for Stanford Artificial Project, 1968.

6. APPENDIX
A. Cost Breakdown
Item Cost
Wheelchair Platform (donated)
Roboteq AX3500 Controller S 395.00
Sony EVI-D70 PTZ Camera S 875.00
ImperX VCE-Pro Framegrabber S 599.00
Microstrain 3DM-GX1 IMU S 1,495.00
Trimble AgGPS S 5,000.00
Robotics Group Inc. DC-DC
Converter S 295.00
Quatech USB to RS232 S 800.00
Total S 9,459.00
B. Man Hours
Group Person Man Hours
JAUS Sam 200
Vision Shawn 250
Vishal 80
Hardware Ali 200
Vishal 40
Prem 40
Justin 200
Total 1010

